

CMG BH66F2475 HT32F67595 Demo Board 使用说明

目录

1.	简介	3
2.	工作原理	3
3.	系统框图	3
4.	操作步骤	4
	4.1 扫描连接	4
	4.2 打开 Notify	4
	4.3 设置激励电压	4
	4.5 Send 开始测量指令	5
	4.6 Notify 数据	5
5.	TMR Switch	6
6.	APP(IOS)	7
	6.1 下载	7
	6.2 扫码绑定	7
	6.3 工装页面	8
	6.4 查看数据	8

版本变更记录

Ver	Date	Description	Author
V0.1	2024/04/01	初始版本	陈伟健
V0.2	2024/05/07	增加 APP(IOS)使用说明	陈伟健
V0.3	2024/05/21	更新实物图	陈伟健
V0.4	2024/07/05	更新图片	陈伟健

1. 简介

CGM Demo Board 主要是由 AFE、主控 (BLE)、TMR Switch 和其他外围电路构成。

- AFE: BH66F2475 內置连续血糖监测电路,包含 24-bit Delta Sigma A/D,4 个 DAC,3 个 OPA,1 个 CMP,具备 SPI/I2C/UART 接口,外部电路只需几颗电阻电容即可实现 2/3/4 电极的连续血糖监测。
- BLE: HT32F67595 是基于 M33 & M0+ 的低功耗蓝牙 MCU。提供 1024 KB Flash, 256 KB SRAM,以及 256 KB ROM,适用于蓝牙低功耗产品,如 CGM 等健康医疗产品。Flash 存储 器具有较大的存储容量,使其成为运行 CGM 算法的理想选择

2. 工作原理

CGM Demo Board 使用了一个三电极结构的传感器来检测葡萄糖水平。DAC1 和 DAC2 生成不同的电压,这些电压被应用到 OPA 的输入端。由于 OPA 虚短虚断(Ibias \approx 0),使得输入端的电压差(Vwe-Vwe)几乎等于 DAC1 和 DAC2 之间的电压差(V_p)。即 AFE 在工作电极(WE)和参考电极(RE)上施加一定的激励电压 V_p。

当葡萄糖与传感器中的酵素发生反应时,将产生一个电流 Imc。这个电流从工作电极(WE)流向参考电极(RE),然后流向对比电极(CE)。通过 ADC 测量电阻 R1 两端的电压,可以计算出电流 Imc的大小,进而得知葡萄糖水平的信息。

3. 系统框图

HT CGM APP(IOS)

- 使用 3.3V 电池供电 ,电池的电源通过 TMR Switch 连接到 VDD 。VDD 连接至 BH66F2475 和 HT32F67595。
- BH66F2475 集成 AFE 电路 闭于采集 Sensor 反应的电流 Iwc 通过 SP1/12C/UART 接口发送给 HT32F67595。
- HT32F67595使用连续葡萄糖监测(CGM)算法将接收到的电流数据转换为血糖值。最终的血糖值通过蓝 牙低功耗(BLE)发送到手机应用程序(APP)。(Demo Board 无 CGM 算法, 暂以电流值代替血糖值)

4. 操作步骤

4.1 扫描连接

打开 nRF Connect APP, 扫描搜索名称为 "BH CGM HT32"的设备,进行 CONNECT。

4.2 打开 Notify

打开 0xFFF0→0xFFF1 Notify,准备接收透传协议数据。打开 0x181F→0x2AA7 Notify, 准备接收 CGMS 标准协议数据。

Unknown Service UUID: 0xFFF0 PRIMARY SERVICE	
Unknown Characteristic	- ※
Properties: NOTIFY Descriptors: Client Characteristic Configuration	+
UUID: 0x2902 Value: Notifications enabled	
Unknown Characteristic UUID: 0xFFF2 Properties: WRITE NO RESPONSE	<u>+</u>
Unknown Service UUID: 0xFD10 PRIMARY SERVICE	
Current Time Service UUID: 0x1805 PRIMARY SERVICE	
Continuous Glucose Monitoring UUID: 0x181F PRIMARY SERVICE	
CGM Measurement UUID: 0x2AA7	*
Properties: NOTIFY Descriptors: Client Characteristic Configuration	+
Value: Notifications enabled	=

4.3 设置激励电压

Demo Board 使用前需要先根据传感器需求设置好激励电压,设置的数据掉电可保存, 仅需设置一次即可。三电极需要设置 DACVREF, DAC10, DAC20。

请求 (主→从):								
BYTE	类型	单位	值	说明				
0	帧头	uint8_t	0x55					
1	帧长度	uint8_t	0x0D					
2	命令号	uint8_t	0xC1					
3	DACVREF Data	uint8_t	х	default : 0x80				
4~5	DAC00 Data	uint16_t	x	固定搭配 CMP 使用				
6~7	DAC10 Data	uint16_t	x	固定搭配 OPA1 使用				
8~9	DAC2O Data	uint16_t	х	固定搭配 OPA2 使用				
10~11	DAC3O Data	uint16_t	х	固定搭配 OPA3 使用				
12	校验位	uint8_t	x	Checksum =~ (帧头+帧长度+命令号++校验 位前一位)+1				

校准电压指令 0xC1

注: MCU 需将收到的数据回给上位机。

4.3.1 计算 Data 值

 DACVREF:内部参考电压 DACVREF: 1.250V(对应 Data 为 0x80),调整幅度为 -60mV~+60mV(基于 PVREF=80H)。DACVREF Data 的值每增加一,输出的参考电压将减 少约 500 μV;反之,每减少一,将增加约 500 μV。

● DACxO:DAC 输出电压 VDACO=VDACVREF×(DAC 值 / 4096)。

例如:

DACVREF=1. 250V → 0x80 DAC10=500mV → 500/1250*4096 \approx 1638=0x0666 DAC20=450mV → 450/1250*4096 \approx 1474=0x05C2

4.3.2 发送校准电压指令 0xC1

APP 通过 0xFFF2 下发 0xC1 指令, 0xFFF1 Notify 回复数据

▶ 请求数据为:55 0D C1 80 00 00 66 06 C2 05 00 00 2A

▶ 回复数据为: AA 0D C1 80 00 00 66 06 C2 05 00 00 D5

Unknown Service UUID: 0xFFF0 PRIMARY SERVICE			
Unknown Characteristic	*		
UUID: 0xFFF1			
Properties: NOTIFY		10:15:48 113	Data written to 0000fff2-0000-1000-
Value: (0x)		10.110.110	0-00805f9b34fb, value: (0x) 55-0D-C1
AA-0D-D1-04-00-00-00-00-07-00-00-6D			-00-00-66-06-C2-05-00-00-2A
Descriptors:	120	10:15:48.113	
Client Characteristic Configuration	<u>+</u>		
UUID: 0x2902			
Value: Notifications enabled		10:15:48.335	Notification received from 0000fff1-00
University Changetonistic			-1000-8000-00805f9b34fb, value: (0x
Onknown characteristic			AA-0D-CT-80-00-00-66-06-C2-05-00
UUID: 0xFFF2			0-D5
Properties: WRITE NO RESPONSE		10:15:48.335	"(0x) AA-0D-C1-80-00-00-
Value: (0x) 55-0D-C1-80-00-00-66-06-C2-05-0	0-00-2A		received

4.3.3 微调 Data 值

DACVREF 和 DACxO 可能会存在一定的偏移 (offset),这可能会影响输出电压的准确性 和精度。为了获得更高的精度,可以通过微调 Data 值来校准输出电压,使其更加精准。 建议使用高输入阻抗万用表测量电压。

4.5 Send 开始测量指令

连接成功后,选择"Continuous Glucose Monitoring" (UUID:0x018F)服务。点击特 征值为"CGM Specific Ops Control Point" (UUID: 0x2AAC)的向上箭头进行写操作,输 入开始测量指令"1A",点击"send"。收到"Response to Start Session: Success", 表示成功开始测量。数据将在设备端每10秒采集一次,每分钟 Notify 一次。

		Write value	NEW LOAD	6	
CGM Specific Ons Control Point	<u>+</u> ++	Save as…		↓ ↓	:42:24.521 Indication received from 00002aac-000 0-1000-8000-00805f9b34fb, value: (0x) 1C-1A-01
UUID: 0x2AAC Properties: INDICATE, WRITE		Advanced		16	42:24.521 "Response to Start Session: Success" received 42:24.526 Data written to 00002aac-0000-10
Client Characteristic Configuration	+	SAVE	CANCEL SEND	16	00-8000-00805f9b34fb, value: (0x) 1C-1A-01 :42:24.526 "Response to Start Session: Success" sent

4.6 Notify 数据

接收到开始指令"1A"后,BLE 每一分钟 Notify 一次数据,包括透传协议和标准协议 CGMS。

5. TMR Switch

事件	Magnetic flux density	OUT	LATCH	描述
E1	<brp< td=""><td>Х</td><td>Х</td><td>安装电池前,环境磁通密度小于 BRP。</td></brp<>	Х	Х	安装电池前,环境磁通密度小于 BRP。
E2	Х	Н	Н	安装电池后,CGM 上电,LATCH 被拉高,OUT 锁住输出 高, 设备不受磁场影响,执行校准等出厂设置。
E3	>BOP	L	Х	CGM 接收 BLE 指令主动拉低 LATCH,OUT 解锁;CGM 放置于 磁场盒子(磁通密度大于 BOP)后,OUT 输出断开,TMR Switch 保持超低功耗,进入仓储模式。
E4	Х	Н	Н	离开磁场盒子,OUT 输出,CGM 上电,LATCH 拉高锁住 OUT 输出高,CGM 不受磁场影响,稳定运行。

CGM TMR Switch BYS8505

6. APP(IOS)

6.1 下载

APP Store 搜索 "HT CGM"或者扫码下载。使用邮箱注册登录 APP。

6.2 扫码绑定

6.2.1 二维码

二维码规则为:#1;#2;#3,其中内容中间使用分号";"进行分隔。

编号	内容	默认值	描述
#1	广播名称	BH CGM HT32	
#2	厂商 ID+MAC 地址	厂商 ID:0xFFFF (No Company ID)	厂商 ID 作为保留功能,MAC 地址由 6 个字 节组成(04:AC:44:11:11:11) 例如:0xFFFF04AC44111111。
#3	自定义数据	0x11223344	保留功能,可用于存放传感器数据、校准 数据等信息

免费二维码生成器 | QR-CODE. NET

例:

可以使用文本二维码生成器,将以下内容生成对应的二维码: BH CGM HT32;0xFFFF04AC44111111;0x11223344

∾ 链接 (■文	本 🛛 电子邮件	♥ 位置	し电话	□短信	🛇 WhatsApp	🕒 Skype	
Zoom	🗢 WI-FI	■ 信用卡	🛗 活动		PayPal	₿ 比特币	
之本							- IF
息							11
BH CGM HT32;0x	FFFF04AC44111111	;0x11223344					- (#:
						h	
▶ 颜色							

BEST HEALTH

6.2.2 绑定设备

在"我的"页面中,可以点击"绑定设备"并扫描二维码。一旦扫描完成,屏幕将显示"绑 定设备中"。当 BLE 连接成功时,屏幕会切换显示为"设备连接成功"。

2501226760@qq.com 的联系和 >	2501226760@qq.com ধন্মর্জ্য >	হুহাগ্রহান্টের হেল ধ্রমার্ম >
警报上限 8.0	副报上限 8.0	醫报上限 8.0
警报下照 4.0	警报下顾 4.0	警报下段 4.0
单位设置	单位设置 ~	单位设置 (~)
- 構建设备 >	<i>绑定设备</i> >	当前设备 剩除"天
脱落警殺	税落警报	
×τ >	× 7 >	脱浆性报
准出奋斗	追出登录	Х Ŧ >
		進出登录
🔓 吉天 🗒 历史 💄 我的	🔓 亩天 🔜 雨史 💄 秋 的	🏠 西天 🕞 历史 💄 我的

6.3 工装页面

长按"首页"右上角的"+"按钮 8 秒,即可进入工装页面。在工装页面中,可以设置激励 电压和解锁 TMR Switch 功能。

6.3.1 设置激励电压

使用 Demo Board 之前,请根据传感器需求设置好激励电压,设置的数据可在掉电情况下保存,只需设置一次即可。对于三电极,需要设置 DACVREF、DAC10 和 DAC20。根据 <u>4.3.1</u>节中的计算 Data 值,填入相应数值后,点击"发送"按钮,发送成功后将显示"已发送"。

6.3.2 解锁 TMR Switch

若需要解锁 TMR Switch,请点击"OFF"按钮,发送成功后将显示"已发送"。

6.4 查看数据

连接成功后, APP 会主动发送当前时间和开始命令给 CGM 设备。默认情况下,数据将在设备 端每 10 秒采集一次,每分钟 Notify 一次。

在"首页"界面可查看测量动态和测量记录,在"历史"界面可查看测量动态和测量百分比数据。可以通过点击测量动态数据点,弹出气泡显示数据的详细内容,再次点击数据点可以关闭气泡。

数据自动保存在根目录下的"HT CGM"文件夹中的"BluetoothData"文件夹内,数据按天

保存为 txt 文本。数据的格式为:时间戳 + 透传数据帧 + WE1 Data。

